421 research outputs found

    Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    Get PDF
    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested

    Determination of tungsten resonance absorption integrals by activation

    Get PDF
    Determination of tungsten resonance absorption integrals by activatio

    Ages of D/d,n/He sup 3 and T/d,n/He sup 4 neutrons in water and tungsten-water mixtures

    Get PDF
    Ages for D-D and D-T neutrons in water and tungsten-water mixture

    An integral test of inelastic scattering cross sections using measured neutron spectra from thick shells of Ta, W, Mo, and Be

    Get PDF
    Integral test of inelastic scattering cross sections using measured neutron spectra from thick shells of Ta, W, Mo, and B

    Remote profiling of lake ice thickness using a short pulse radar system aboard a C-47 aircraft

    Get PDF
    Design and operation of short pulse radar systems for use in ice thickness measurement are described. Two ice profiling systems were tested, an S system which used either random noise or continous wave modulation at 2.8 GHz and a less powerful C band system which operated at 6.0 GHz and did not have random noise modulation. Flight altitudes of 4,000 feet were used, but the S band system was usable at 7,000 feet allowing flights in poor weather conditions. A minimum ice thickness of four inches is required for measurement, while the thickest ice measured was 36 inches. System accuracy is plus or minus one inch

    Coordinated aircraft and ship surveys for determining impact of river inputs on great lakes waters. Remote sensing results

    Get PDF
    The remote sensing results of aircraft and ship surveys for determining the impact of river effluents on Great Lakes waters are presented. Aircraft multi-spectral scanner data were acquired throughout the spring and early summer of 1976 at five locations: the West Basin of Lake Erie, Genesee River - Lake Ontario, Menomonee River - Lake Michigan, Grand River - Lake Michigan, and Nemadji River - Lake Superior. Multispectral scanner data and ship surface sample data are correlated resulting in 40 contour plots showing large-scale distributions of parameters such as total suspended solids, turbidity, Secchi depth, nutrients, salts, and dissolved oxygen. The imagery and data analysis are used to determine the transport and dispersion of materials from the river discharges, especially during spring runoff events, and to evaluate the relative effects of river input, resuspension, and shore erosion. Twenty-five LANDSAT satellite images of the study sites are also included in the analysis. Examples of the use of remote sensing data in quantitatively estimating total particulate loading in determining water types, in assessing transport across international boundaries, and in supporting numerical current modeling are included. The importance of coordination of aircraft and ship lake surveys is discussed, including the use of telefacsimile for the transmission of imagery

    Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    Get PDF
    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300– 700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation

    Methodological Issues of Spatial Agent-Based Models

    Get PDF
    Agent based modeling (ABM) is a standard tool that is useful across many disciplines. Despite widespread and mounting interest in ABM, even broader adoption has been hindered by a set of methodological challenges that run from issues around basic tools to the need for a more complete conceptual foundation for the approach. After several decades of progress, ABMs remain difficult to develop and use for many students, scholars, and policy makers. This difficulty holds especially true for models designed to represent spatial patterns and processes across a broad range of human, natural, and human-environment systems. In this paper, we describe the methodological challenges facing further development and use of spatial ABM (SABM) and suggest some potential solutions from multiple disciplines. We first define SABM to narrow our object of inquiry, and then explore how spatiality is a source of both advantages and challenges. We examine how time interacts with space in models and delve into issues of model development in general and modeling frameworks and tools specifically. We draw on lessons and insights from fields with a history of ABM contributions, including economics, ecology, geography, ecology, anthropology, and spatial science with the goal of identifying promising ways forward for this powerful means of modeling

    Psychological attachment to the group: Cross-cultural differences in organizational identification and subjective norms as predictors of workers' turnover intentions

    Get PDF
    Two studies wed the theory of reasoned action, social identity theory, and Ashforth and Mael's work on organizational identification to predict turnover intentions in Japanese and British commercial and academic organizations. In both studies and in both countries, the authors expected and found that identification with the organization substantially and significantly predicted turnover intentions. Attitudes predicted intentions only in Study 2, and subjective norms significantly predicted intentions across both studies. The authors hypothesized that subjective norms would be a significantly stronger predictor of turnover intentions in a collectivist setting. This prediction was supported. Although social identity is strongly associated with turnover intentions across both cultures, the subjective normative aspects of group membership are significantly more strongly associated in the Japanese organizations
    • …
    corecore